免费看黄色大片-久久精品毛片-欧美日韩亚洲视频-日韩电影二区-天天射夜夜-色屁屁ts人妖系列二区-欧美色图12p-美女被c出水-日韩的一区二区-美女高潮流白浆视频-日韩精品一区二区久久-全部免费毛片在线播放网站-99精品国产在热久久婷婷-午夜精品理论片-亚洲人成网在线播放

Chinese researchers use AI to explore diabetes classification

Source: Xinhua| 2019-01-10 19:05:25|Editor: Xiang Bo
Video PlayerClose

BEIJING, Jan. 10 (Xinhua) -- Chinese researchers are using artificial intelligence (AI) to classify different types of diabetes, which may help Chinese patients obtain more precise treatment.

Different types of diabetes require diverse treatment. The current diabetes classification system, which has been used for more than 20 years is based on cause and pathological?features, which has limitations in guiding clinical treatment.

Researchers from Peking University People's Hospital are working on a more elaborate classification of diabetes that may support individualized treatment.

They conducted research on diabetes classification based on the data of 2,316 Chinese people newly diagnosed with diabetes and 815 Americans.

Using the AI clustering method, they separate the two groups into four diabete subtypes based on five variables including age, BMI, blood glucose levels and insulin resistance indexes.

According to Zou Xiantong, one of the researchers, a previous study from Northern Europe has used similar methods to divide diabetes into five subgroups and demonstrated that the subgroups have different clinical manifestations and corresponding treatments. However, all cases involved in the study were from Northern Europe, and it is unknown whether it is applicable to other populations.

"We hope our research may provide data support for more accurate typing and treatment of diabetes in the Chinese population," Zou said.

The data analysis showed that the main clinical features of the four subtypes were basically consistent in the Chinese and U.S. groups, which also coincided with the subtype characteristics of the Northern Europe research.

The research was published in the journal The Lancet Diabetes and Endocrinology.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001377340951