免费看黄色大片-久久精品毛片-欧美日韩亚洲视频-日韩电影二区-天天射夜夜-色屁屁ts人妖系列二区-欧美色图12p-美女被c出水-日韩的一区二区-美女高潮流白浆视频-日韩精品一区二区久久-全部免费毛片在线播放网站-99精品国产在热久久婷婷-午夜精品理论片-亚洲人成网在线播放

New laser technology helps driverless cars "see" around corners

Source: Xinhua| 2018-03-07 13:09:02|Editor: Shi Yinglun
Video PlayerClose

SAN FRANCISCO, March 7 (Xinhua) -- Scientists from Stanford University have developed new laser-based imaging technology that would allow autonomous cars to "see" objects hidden around corners and react in advance.

The new technology, known as non-line-of-sight imaging, depends on analyzing scattered light particles that are ignored by guidance systems currently used in cars such as light detection and ranging (LIDAR) systems.

The existing LIDAR systems measure distance to a target by sending laser pulses towards the object and calculate the time it takes for light to be reflected. The data is then used to build a three-dimensional model of the object.

However, non-line-of-sight imaging takes the idea further. It collects multiple scattered light rather than the light that bounced directly back off an object to reconstruct the shape of hidden objects.

The researchers shoot pulses of laser light at a wall and, invisible to the human eye, those pulses bounce off objects around the corner and bounce back to the wall and to the detector, according to the study published Monday in the journal Nature.

"It is a very simple tweak to how you do imaging, but it has major implications in terms of how you can reconstruct the images from that information," Matthew O'Toole, co-lead author of the study, told the Guardian.

"It sounds like magic but the idea of non-line-of-sight imaging is actually feasible," said Gordon Wetzstein, assistant professor of electrical engineering and senior author of the paper, in a press release published on the website of Stanford University.

The researchers tested their technique successfully outside but they worked only with indirect light.

If the technology were placed on a car today, that car could easily detect things like road signs, safety vests or road markers, although it might struggle with a person wearing non-reflective clothing, they noted in the release.

"This is a big step forward for our field that will hopefully benefit all of us," said Wetzstein. "In the future, we want to make it even more practical in the 'wild.'"

Besides its application on autonomous vehicles, other uses of the technology could include seeing through foliage from aerial vehicles or giving rescue teams the ability to find people blocked from view by walls and rubble.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001370219591