"/>

免费看黄色大片-久久精品毛片-欧美日韩亚洲视频-日韩电影二区-天天射夜夜-色屁屁ts人妖系列二区-欧美色图12p-美女被c出水-日韩的一区二区-美女高潮流白浆视频-日韩精品一区二区久久-全部免费毛片在线播放网站-99精品国产在热久久婷婷-午夜精品理论片-亚洲人成网在线播放

Aussie-linked research identifies key mechanisms of El Nino global weather events
Source: Xinhua   2018-07-26 10:33:56

SYDNEY, July 26 (Xinhua) -- Global El Nino weather events can be traced to two main atmosphere-ocean oscillations, a discovery that significantly improves the understanding of one of the world's most crucial and complex climate processes, according to latest Australian-linked research.

"We used to think of El Nino being fairly well explained by simple conceptual models," the study's co-author Dr Dietmar Dommenget, from Monash University's School of Earth, Atmosphere and Environment, said in a statement on Thursday.

"However, as the number of El Nino events we have observed has increased, its complex behavior has become more apparent, revealing interesting interactions with the atmosphere and other ocean basins," he said.

El Nino events are characterized by an unusual warming of the central to eastern equatorial Pacific, which can last up to one year, according to the university. Its remote "ripple effects" can not only be found in the atmosphere, but also in ocean currents, ecosystems, the occurrence of natural disasters and economies.

The study involved a group of 40 climate scientists from 11 countries analyzing large amounts of climate observations and computer model simulations covering temperature, wind and ocean current configurations to trace the main mechanisms behind El Nino.

Weather events and atmospheric circulation changes induced by temperature changes in the Indian and Atlantic oceans were found to be important factors behind the "constant excitation" of tropical Pacific climate systems, interactions that in turn helped fuel El Nino irregularities, said the researchers.

"Our study reveals that there is a hidden structure in the seemingly chaotic and unpredictable occurrence of El Nino events," said the study's lead author Axel Timmermann, from South Korea's Pusan National University. The findings have been published in scientific journal Nature.

The next step will be to conduct more comprehensive climate modeling studies in a more realistic setting to determine any shifts in El Nino characteristics amid climate change, said the researchers.

Editor: Li Xia
Related News
Xinhuanet

Aussie-linked research identifies key mechanisms of El Nino global weather events

Source: Xinhua 2018-07-26 10:33:56
[Editor: huaxia]

SYDNEY, July 26 (Xinhua) -- Global El Nino weather events can be traced to two main atmosphere-ocean oscillations, a discovery that significantly improves the understanding of one of the world's most crucial and complex climate processes, according to latest Australian-linked research.

"We used to think of El Nino being fairly well explained by simple conceptual models," the study's co-author Dr Dietmar Dommenget, from Monash University's School of Earth, Atmosphere and Environment, said in a statement on Thursday.

"However, as the number of El Nino events we have observed has increased, its complex behavior has become more apparent, revealing interesting interactions with the atmosphere and other ocean basins," he said.

El Nino events are characterized by an unusual warming of the central to eastern equatorial Pacific, which can last up to one year, according to the university. Its remote "ripple effects" can not only be found in the atmosphere, but also in ocean currents, ecosystems, the occurrence of natural disasters and economies.

The study involved a group of 40 climate scientists from 11 countries analyzing large amounts of climate observations and computer model simulations covering temperature, wind and ocean current configurations to trace the main mechanisms behind El Nino.

Weather events and atmospheric circulation changes induced by temperature changes in the Indian and Atlantic oceans were found to be important factors behind the "constant excitation" of tropical Pacific climate systems, interactions that in turn helped fuel El Nino irregularities, said the researchers.

"Our study reveals that there is a hidden structure in the seemingly chaotic and unpredictable occurrence of El Nino events," said the study's lead author Axel Timmermann, from South Korea's Pusan National University. The findings have been published in scientific journal Nature.

The next step will be to conduct more comprehensive climate modeling studies in a more realistic setting to determine any shifts in El Nino characteristics amid climate change, said the researchers.

[Editor: huaxia]
010020070750000000000000011100001373492921